

Version 1.0 | June 2025

Powered by ThingsLinker

Node Development Board

Index of Contents

1. Product Overview	3
2. Features	3
3. Specification	
4. Workflow	6
5. Application of Sensor Node	
6. Connectivity Interfaces	7
7. On board Sensor	7
8. Power Management	8
9. Environmental Ratings	8
10. Ordering Information	8
11. Mechanical Drawing	9
12. Node PCB	10
13. Contact Information	11

1. Product Overview

The Tarangify T-LORA-N01 is a versatile LoRaWAN development board designed for rapid prototyping and testing of low-power wireless sensor nodes. Built around the RAK3172 LoRa module, the T-LORA-N01 offers ultra-low power operation, integrated USB for programming and debugging, and accessible GPIO headers for connecting a wide range of digital, analog, and I²C-based sensors. It supports the Arduino (RUI3) development environment, making it ideal for engineers and developers building custom IoT solutions. With onboard voltage regulation, a Liion/LiFePO₄ battery connector, and a solar charging interface, the T-LORA-N01 enables seamless transition from prototyping to field deployment in applications such as environmental monitoring, smart agriculture, industrial automation, and remote telemetry.

2. Features

- Smart Overheat Protection: Auto cut-off based on enclosure temperature
- LoRaWAN Connectivity: Based on RAK3172 module. Range up to 15km.
- USB to TTL Converter: Integrated TTL for programming/debugging.
- Solar Charging: Inbuilt solar charging facilities.
- **Temperature & Humidity Sensing:** Onboard AHT20 digital temperature and humidity sensor.
- Support Battery
- **Voltage Monitoring:** Integrated voltage sensor for battery or supply voltage monitoring.
- Multiple Communication Interfaces: I2C, UART1
- Flexible Sensor Input: Dedicated PB4 pin for reading various sensor data.
- Low Power Consumption: Optimised for battery-powered applications.
- Compact Form Factor: Designed for easy integration into various projects.
- Environment Factor: Weather proof, UV proof, Waterproof Enclosure.

Powered by ThingsLinker

3. Specifications

• 3.1. RAK3172 LoRa Module

Supported LoRaWAN Regions: EU868, IN865, RU864

Operating Voltage: Typically 2.9V 3.6V

Operating Temperature: −20°C~+85°C

o Communication: UART (AT Commands), I2C

• 3.2. TTL Converter

• Function: USB to Serial (TTL) conversion

• Interface: USB Type C, TTL serial pins

o Driver Support: Windows, Linux, macOS

• 3.3. Solar Charging

• Input Voltage: 4.5V 6V (from solar panel)

• Charging Current: Up to 1000mA

o Battery Support: LiFePo4 (LFP)/ Li-ion/ Li-Po

• 3.4. AHT20 Temperature & Humidity Sensor

o Sensor Type: Digital Temperature & Humidity Sensor

o Interface: I2C

o Temperature Range: −40 oC~+80 oC

• Humidity Range: 0 100%RH

• Accuracy:

■ Temperature: ±0.3∘C

■ **Humidity:** ±2%RH

Powered by ThingsLinker

• 3.5. Voltage Sensor

o Type: Resistive Voltage Divider

o Pin: PB2

• Output: Analog voltage, connected to an ADC pin of the RAK3172

o Measurement Range: typically designed for battery voltage monitoring

• 3.6. General I/O & Interfaces

• I2C: Shared bus for AHT20 and external I2C devices.

• **UART1:** Dedicated for external serial communication.

• **PB4 Pin:** Configurable General Purpose Input/Output (GPIO) for additional sensor input.

o PA15 Pin: LED

o PB5 Pin: Addressable RGB LED

• 3.7. Electrical Specifications

Parameter	Value
Operating Voltage	3.3V (regulated from LiFePO4)
Battery Support	LiFePO4 / LiPo /Li-ion (1s)
Charging Input	~6V (via solar panel)

4. Workflow

It communicates wirelessly over roughly 15km line of sight using a custom LoRa P2P protocol to a custom gateway. This enables off-grid, real-time automation such as smart irrigation, and while it doesn't require internet, it can connect if desired.

• RAK3172 Configuration for LoRaWAN or LoRa P2P:

To enable the RAK3172 module as a LoRa P2P module or LoRaWAN end-device, it must be configured by sending AT commands. You can configure the RAK3172 in two ways:

- LoRaWAN End-Device RAK3172 as LoRaWAN IoT device.
- LoRa P2P Point-to-point communication between two RAK3172 modules.

• Example:

 A LoRaWAN-based smart irrigation system uses solar-powered sensor nodes to monitor soil moisture in agricultural fields. These nodes send uplink data to a LoRaWAN gateway, which forwards it to a cloud server. When the application detects low moisture levels, it sends a downlink command to an actuator node—typically a device—that activates a relay or solenoid valve to start irrigation.

5. Applications of Sensor Node

- **Environmental Monitoring:** Remote temperature, humidity, and general environmental data collection.
- Smart Agriculture: Soil moisture, weather station, and irrigation control.
- Asset Tracking: Low-power, long-range tracking of assets.
- Industrial IoT: Monitoring sensor data in industrial environments.
- Smart City Applications: Air quality, street light control, waste management.
- **Remote Sensing:** Data collection from isolated or hard-to-reach locations using solar power.

6. Connectivity Interfaces

Interface	Description
UART1	External modules
UART2	Connected to TTL for USB serial
I ² C	Used by AHT20; exposed for other sensors
GPIO	PB4 exposed (Analog capable)

7. Onboard Sensors

Sensor	Туре	Interface	Notes
AHT20	Temperature + Humidity	I ² C	for internal measure
Voltage	Resistor Divider	Analog pin PB2	Battery voltage monitoring

8. Power Management

• Solar Panel Input: 6V max

• **Battery Charging:** Supports 3.6V / 4.2V (LiFePO4 /LiPo /Li-ion) (Short or mount 0Ω resistor to R18 Pad for 4.2V based batteries)

• Low Power Modes: Supported sleep functions

• Power Consumption:

○ **Deep Sleep:** ~2-5 mA

o Active TX (LoRa): ~250-350 mA

9. Environmental Ratings

Parameter	Value
Operating Temp.	-20°C~+85°C
Storage Temp.	-20°C to +75°C
Humidity (non-cond.)	10% to 90% RH
Cooling	Natural convection

10. Ordering Information

Product Code	Description	Color
T-LORA-N01	Node Development Board	Black

11. Mechanical Drawing

All Dimension are in mm

Dimensional error:

- 1. Length, width, height and pin pitch error ± 8%
- 2. Pin length error ±1mm
- 3. Pin diameter error -0.2mm

12. Node PCB

Powered by ThingsLinker

13. Contact Information

- support@thingslinker.com
- <u>https://thingslinker.com</u>